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Abstract The dynamics of photoinduced electron injection
from (E)-1-(4-methoxyphenyl)-2-styryl-1H-phenanthro
[9,10-d]imidazole (MPSPI) synthesised using nano TiO2 as
catalyst to Fe2O3 nanocrystal has been studied by FT-IR,
absorption, fluorescence and lifetime spectroscopic methods.
The binding between nanoparticle andMPSPI is confirmed by
binding constant and binding site. The distance between
MPSPI and nanoparticle as well as the critical energy transfer
distance has been obtained. The free energy change (ΔGet) for
electron injection has also been deduced.
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Introduction

Arylimidazoles play important role in materials science and
medicinal chemistry due to their optoelectronic properties and
high thermal stabilities [1–7]. Substituted imidazoles are ex-
tensively used as glucagon receptors [8], CB1 cannabinoid
receptor antagonists [9] and modulators of P-glycoprotein
(P-gp)-mediated multidrug resistance (MDR) [10], antibac-
terial [11], anti-allergic [12], analgesic [13], antitumor [14]
and also as pesticides [15]. Many of the reported synthetic
protocols for imidazoles [16–31] suffer from more disadvan-
tages such as use of toxic organic solvents, acidic conditions,

complex work-up, purification, side reactions, low yield and
use of hazardous and expensive reagents. Thus the develop-
ment of a new catalyst is essential to overcome these short-
comings and to fulfill the criteria of a milder reaction condi-
tions, higher yield and reusability of catalyst. Titanium diox-
ide find widespread industrial applications [32–36] and its
utility has been extended to the photodegradation of pesticides
[37] and carcinogenic dyes [38, 39]. From a synthetic point of
view, titanium dioxide has been as a green, inexpensive, mild
and recyclable heterogeneous Lewis acid potential catalyst in
certain organic transformations like Beckmann rearrangement
[40], Fridel-Crafts acylation [41], Biginelli condensation [42]
and also the synthesis of dihydropyrazines [43], piperazines
[44], quinoxalines [45] and photocatalytic oxidation of amines
[46].

Nano sized iron oxide particulates have emerged as
versatile materials for different applications due to their,
magnetic, electronic, photonic and optical properties. The
structure-function relationship of these nano particles
have been intensively studied because of the applications
in magnetic storage, gas sensing, biomedical and cataly-
sis applications [47–56]. Out of various phases of iron
oxide nano particle recently great interest has been de-
voted towards to the synthesis of α-phase of iron oxide
nano particles (α-Fe2O3, hematite). These are of techno-
logical interest for the use in photoelectrochemical (PEC)
water splitting reaction for the production of hydrogen
[57]. Hematite is the inexpensive material of interest for
PEC application due to its suitable band gap 2.2 eV,
valence band edge position, earth abundance and envi-
ronmentally benign nature [58]. Some researchers have
reported the specific interaction between nanoparticles
and protein as well as other biomolecules [59–63]. There
are many reports on the photoinduced electron transfer
from organic molecule to nanoparticle semiconductors
[64–71].
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Materials and Methods

Measurements

XRD patterns were recorded for the centrifuged and
dried samples using X–ray Rigaku diffractometer with
Cu Kα source (30 kV, 100 mA), at a scan speed of
3.0000 deg/min, step width of 0.1000 deg, in a 2θ range
of 20–80 . The energy dispersive X-ray (EDS) spectra of
the nanosemiconductors were recorded with a JEOL
JSM-5610 scanning electron microscope (SEM) equipped
with back electron (BE) detector and EDX. The sample
was placed on an adhesive carbon slice supported on
copper stubs and coated with 10 nm thick gold using
JEOL JFC- 1600 auto fine coater prior to measurement.

The
1
H and

13
C NMR spectra at 400 and 100 MHz, re-

spectively were obtained at room temperature using a Bruker
400 MHz NMR spectrometer (Bruker biospin, California,
USA). The mass spectra were obtained using a Thermo Fi-
scher LC-Mass spectrometer in fast atom bombardment
(FAB) mode (Thermo, France). The UV–vis and
photoluminescence spectra were recorded with Perkin Elmer
Lambda 35 UV–vis spectrophotometer and PerkinElmer
LS55 fluorescence spectrometer, respectively.

The lifetime measurements were carried out with a nano-
second time correlated single photon counting (TCSPC) spec-
trometer Horiba Fluorocube-01-NL lifetime system with
Nano LED (pulsed diode exCitation source) as the excitation
source and TBX-PS as detector. The quantum yields were
measured by comparing the emission intensities of a standard
sample and the unknown sample [72–74] using the formula,

Фunk=Фstd Iunk
Istd

� �
Astd
Aunk

� �
ηunk
ηstd

� �2
, Фunk and Фstd are the quan-

tum yield of the sample and the standard, respectively; Iunk
and Istd are the integrated emission intensities of the sample
and the standard, respectively. Aunk and Astd are the absor-
bance of the sample and the standard at the excitation wave-
length, respectively. ηunk and ηstd are the refractive index of the
sample and standard solutions, respectively. The cyclic volt-
ammetry analyses were performed with CHI electrochemical
analyzer 604C (CHI electrochemical analyzer, USA) at a scan
rate of 100 mV s

−1
using 0.1 M tetra-(n-butyl)-ammonium

hexafluorophosphate as supporting electrolyte with Ag/Ag
+

(0.01MAgNO3) as the reference electrode and Pt electrode as
the working electrode, standardized for the redox couple
ferricinium/ferrocene. All solutions were purged with a nitro-
gen stream for 10 min before measurement. Thermal analysis
of the phenanthrimidazoles was made with NETZSCH-
Geratebau Gmbh thermal analysis STA 409 PCO. The differ-
ential scanning calorimetric (DSC) and thermogravimetric
analyses (TGA) were made under nitrogen atmosphere
(100 mL min

−1
). The sensitivity of the instrument was set at

0.01μg and the sample (10mg) was heated from 30 to 700 ° C

at the rate of 10 or 15 or 20 K min
−1
. DFT calculations were

performed with Gaussian-03 [75] package.

Synthesis of (E)-1-(4-Methoxyphenyl)
-2-Styryl-1H-Phenanthro [9,10-d]Imidazole (MPSPI)

A mixture of chinnamaldehyde (1 mmol), phenanthrene-9,10-
dione (1 mmol), 4-methoxyaniline (1 mmol) and ammonium
acetate (1 mmol) with TiO2 (1 mol%) as catalyst was stirred at
120 °C in an ice bath with continuous stirring with a bar
magnet. The progress of the reaction was monitored by TLC
(Scheme 1). After completion of the reaction, 10 ml of ethyl
acetate was added to the reaction mixture and shaken well to
dissolve the organic components and the mass filtered to
separate out TiO2 and the residue was washed with ethyl
acetate. The solid residue of TiO2 was further washed with
hot acetone and then dried up. The product was purified by
column chromatography using benzene: ethyl acetate (9:1) as
the eluent. Yield: 79 %, M.p. 212 °C, Anal. calcd. for
C30H22N2O: C, 84.48; H, 5.20; N, 6.57. Found: C, 84.46; H,
5.19; N, 6.56. 1H NMR (400 MHz, DMSO): δ 3.917 (s, 3H),
7.97 (d, J=8.8Hz, 1H), 8.09 (d, J=8.4Hz, 1H), 8.23 (d, J=
7.2Hz, 2H), 8.34 (d, J=8.8Hz, 1H), 8.96 (d, J=9.2Hz, 1H),
7.41–7.54 (m, 8H), 7.67–7.87 (m, 4H). 13C NMR (400 MHz,
DMSO): δ 55.49, 105.55, 113.81, 118.85, 120.05, 120.60,
122.19, 122.30, 124.11, 126.57, 126.82, 127.74, 127.86,
127.90, 128.04, 128.28, 128.75, 128.96, 129.11, 129.33,
130.53, 131.47, 134.92, 135.09, 135.90, 138.08, 138.75,
143.51, 153.59, 157.22, 161.89. MS: m/z 426 [M+].

Results and Discussion

Characterisation of Fe2O3 Nanocrystal

Figure 1 display the powder diffraction pattern of the imidaz-
ole bound magnetic nanoparticles. The recorded XRD is in
agreement with that of maghemite cubic Fe2O3 with unit cell
length as 0.8352 nm. The peaks at 30.2, 35.7, 43.3, 53.7, 57.3
and 62.9° correspond to 220, 311, 400, 422, 511 and 440-
planes, respectively [JCPDS card no. 39–1346]. Figure 1
(XRD 15–80°) presents the XRD of imidazole bound mag-
netic nanoparticles. The mean crystallite size (L) of the imid-
azole bound nanoparticles is 30.3 nm and the calculated
surface area is 50.58 m2/g.

Absorption of MPSPI – Nanocrystalline Fe2O3

Figure 2 display the absorption spectra of MPSPI in presence
of Fe2O3 nanocrystals dispersed at different loading and also
in their absence. Nano Fe2O3 enhance the absorbance of
MPSPI remarkably without shifting its absorption maximum
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at 258 nm. This indicates that the semiconductor nanocrystals
do not modify the excitation process of the ligand. The en-
hanced absorption at 258 nm observed with the dispersed
nanoparticles are due to adsorption of the MPSPI on surface
of nanocrystals. This is because of effective transfer of elec-
tron from the excited state of the MPSPI to the conduction
band of the semiconductor nanoparticles.

FT-IR Characteristics of MPSPI –Nanocrystalline Fe2O3

The FT-IR spectrum of MPSPI and also that of MPSPI
adsorbed on the nanocrystals are recorded. The spectrum of

MPSPI shows the > C=N stretching vibration at 1602 cm−1.
This band is shifted to 1632 cm−1 allowed to adsorb on the
nanocrystals. These observations show that the MPSPI is
bound to the surface of nanoparticles.

Fluorescence Quenching Characteristics

The fluorescence quenching technique is applied to study the
interaction between nanomaterials and MPSPI, to infer the
association and also the electron transfer between them as
indicated in Scheme 2. Addition of nanoparticles to the solu-
tion of MPSPI resulted in the quenching of its fluorescence.

Scheme 1 Possible mechanism
for catalytic synthesis of
phenanthrimidazole
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Figure 3 displays the effect of increasing concentration of
nanoparticles on the fluorescence spectrum of MPSPI. This
quenching behavior is similar to the studies reported earlier
[76]. The apparent association constants (Kapp) have been
obtained from the fluorescence quenching data using the
following equation

1= F0– Fð Þ ¼ 1= F0–Fð Þ þ 1=Kapp F0‐Fð Þ nanoparticles½ � ð1Þ

where Kapp is the apparent association constant, F0 is the initial
fluorescence intensity of MPSPI, F is the fluorescence inten-
sity of MPSPI adsorbed on nanoparticles. A good linear rela-
tionship between 1/(F0 and F) and the reciprocal concentration
of nanoparticles is seen. From the slope, the values of Kapp

have been assessed for MPSPI – nano Fe2O3 as 3.68 × 107.
The fluorescence quenching behavior is usually described

by Stern–Volmer relation I0/I=1+KSV [Q]. Here, I0 and I are
the fluorescence intensities in the absence and presence of

quencher, KSV is the Stern–Volmer constant related to the
bimolecular quenching rate constant and Q is the quencher.
Figure 4 presents the Stern-Volmer plot. The ability of the
excited state MPSPI to inject its electrons into the conduction
band of nanoparticles is determined from the energy differ-
ence between the conduction band of nanoparticles and excit-
ed state oxidation potential of MPSPI.

Energetics

From the onset oxidation potential (Eox) and the onset reduc-
tion potential (Ered) of the benzimidazole, HOMO and LUMO
energy levels have been calculated according to the equations:
HOMO=−e(Eox+4.71) (eV), LUMO=−e(Ered+4.71) (eV),

Fig. 2 Absorption spectra of MPSPI in presence and absence of Fe2O3

nanocrystal with various concentrations

Scheme 2 Schematic diagram describing the electron-donating energy
level of MPSPI

Fig. 1 Powder X-ray diffraction (XRD) pattern of MPSPI
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HOMO-LUMO energies of phenanthrimidazole are also cal-
culated theoretically. The theoretically calculated energies are
in good agreement with the experimental values. On the basis
of the relative positions of phenanthrimidazole derivative and
Fe2O3 energy levels shown in Scheme 2, the electron injection
would be thermodynamically allowed from the excited singlet
of the phenanthrimidazole derivative to the conduction band
of nanocrystalline Fe2O3.

From HOMO-LUMO analysis of MPSPI, the oxidation
potential of excited singlet state MPSPI is obtained as
−1.84 V (vs. NHE), using the equation, Es*/s+=Es/s+−Es.
Here, Es/s+ is the oxidation potential of 0.20 V (vs. NHE)
and Es is the excited state energy, 2.04 eV. The excited state
energy of the MPSPI is calculated from the fluorescence
maximum based on the reported method [77]. The energy
level of the conduction band of semiconductor nanoparticles
is shown in Scheme 2 [78]. It suggests that the electron

transfer from excited state MPSPI to the conduction band of
nanoparticulate semiconductors is energetically favourable.

Binding Constant and Number of Binding Sites

Static quenching arises from the formation of complex be-
tween fluorophore and the quencher and the binding constants
(K) have been calculated by employing the equation

log F0– Fð Þ=F½ � ¼ log K þ nlog Q½ � ð2Þ

where K is the binding constant of nanoparticles with FPPBI
and the calculated value of binding constant value 372.24×
107 and the number of binding site (n) is 1.20.

Electron Transfer Between MPSPI – Nanocrystalline Fe2O3

The decrease in fluorescence intensity is attributed to electron
transfer between MPSPI and the nanoparticles in the case of
semiconductors. The excited state energy of the MPSPI is
larger than the conductance band energy levels of
nanosemiconductors [79]. This makes possible the energy
transfer from the excited state of MPSPI to the nanoparticles.
The energy transfer efficiency (E) is calculated using the
equation, E=1 – (I/I0), as 0.59 (Fe2O3). Here, I is the emission
intensity of donor in the presence of acceptor and I0 is the
emission intensity of the donor alone. From the above results
it is clear that, in presence of nanoparticles, the fluorescence
intensity of MPSPI is reduced (from I0 to I) by energy transfer
to nanoparticles.

According to Forster’s non-radiative energy transfer theory
[80], the energy transfer efficiency (E) is related not only to
the distance between the acceptor and donor (r0), but also to
the critical energy transfer distance (R0). That is, E=R

6
0/(R

6
0+

r60), where, R0 is the critical distance when the transfer effi-
ciency is 50 %. R6

0=8.8 ×10−25K2N−4 φ J, where, K2 is the
spatial orientation factor of the dipole, N is the refractive index
of the medium, φ is the fluorescence quantum yield of the
donor and J is the overlap integral of the fluorescence emis-
sion spectrum of the donor and the absorption spectrum of the
acceptor. The value of J can be calculated by using the
equation, J=∫F(λ)ε(λ)λ4dλ/F(λ)dλ, where, F(λ) is the fluores-
cence intensity of the donor, ε(λ) is molar absorptivity of the
acceptor. The parameter J can be evaluated by integrating the
spectral parameters as 9.76×10−12 cm3 L mol−1. Under these
experimental conditions, the value of R0 is found to be about
0.69 nm for the nanocrystals; the values of K2 (=2/3) and N
(=1.3467) used are from the literature [81] and the φ value is
from the present study. Obviously, the calculated value of R0

is in the range of maximal critical distance. This is in accor-
dance with the conditions of Forster’s non-radiative energy
transfer theory [82, 83], indicating the static quenching

Fig. 3 Fluorescence spectra of MPSPI in the presence and absence of
Fe2O3 nanocrystal with various concentrations

Fig. 4 Stern-Volmer plot of MPSPI with Fe2O3 nanocrystal
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interaction between nanoparticles and MPSPI. The value of r0
(0.91 nm) is less than 8 nm which is larger than that of R0 in
the present study also reveals the operation of static-type of
quenching mechanism [84].

Free Energy Change (ΔGet) for Electron Transfer Processes

The thermodynamic feasibility of excited state electron trans-
fer reaction has been confirmed by the calculation of free
energy change by employing the well known Rehm-Weller
expression [85].

Get ¼ E1=2
oxð Þ − E1=2

redð Þ − Es þ C ð3Þ

where, E1/2
(ox) is the oxidation potential of MPSPI, E1/2(red) is

the reduction potential of nanoparticles, that is, the conduction
band potential of nanoparticles, Es is the excited state energy
of MPSPI and C is the coulombic term. Since one of the
species is neutral and the solvent used is polar in nature, the
coulombic term in the above expression can be neglected [86].
The values of ΔGet are calculated as −3.32 eV. The high
negative values indicate the thermodynamic feasibility of the
electron transfer process [87].

Fluorescence lifetime measurements

An alternative way to rationalize the binding behaviour in the
present study is by considering the fluorescence lifetime of
FPPBI with nanoparticles. The experimental decay curves
were fit to a bi exponentials, f(t)=α1 exp (−t/τ1)+α2 exp (−t/
τ2), where α1 and τ1 are respectively, the pre-exponential
factor and lifetime of the various excited states involved. This
model is based on the assumption that one, two or three
fluorescent substances are present in the solution. The fluo-
rescence decay curves of all nanoparticles with MPSPI were
recorded in ethanol. Laser excitationwas set at 270 nm and the
fluorescence signal was measured at emission wavelength of
individual compound. The fluorescence decay was fitted with
a biexponential function and the decay time, radiative (kr),
non-radiative (knr) constants and energy transfer rate constants
(ket) are presented in Table 1. Fe2O3 nanocrystals bound to
change the fluorescence lifetime. The results can be visualized
as shown in Fig. 5. Examination of rate constant of energy
transfer shows that energy transfer is more with Fe2O3

nanocrystals which are strongly bound to the ligand. The
strongly bound nanocrystal Fe2O3 displays a large electron
transfer rate. That is the binding constant and the rate of
electron transfer is related.

Conclusions

Fluorophore (E)-1-(4-methoxyphenyl)-2-styryl-1H-
phenanthro [9,10-d]imidazole (MPSPI) is adsorbed on the
surface of semiconductor nanoparticles through azomethine
nitrogen. The conduction band energy positions determine the
electron transfer from excited state MPSPI to the nanoparti-
cles. The distance between the MPSPI and nanoparticles,
deduced on the basis of Forester’s non-radiation energy trans-
fer theory. The negative ΔGet values for all nanoparticles
reveal that the electron transfer process is thermodynamically
favorable. Electron transfer from MPSPI to nanoparticles is
explained in detail.
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Table 1 Bi-Exponential fitting parameter for fluorescence decay

Compound τ1 τ2 α1 α2 x2 τavg kr knr

MPSPI 2.3764×10−9 9.0258×10−9 4.0317×10−2 (77.84) 3.0221×10−3 (22.16) 1.04 2.84 0.17 0.18

MPSPI - Fe2O3 2.2007×10−9 1.1364×10−8 3.6920×10−2 (74.46) 2.4599×10−3 (25.60) 1.12 2.77 0.18 0.18

values within the parenthesis corresponds to relative amplitude

Fig. 5 Fluorescence lifetime spectra of MPSPI in presence and absence
of Fe2O3 nanocrystal
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